`math`
|
main
module for mathematical computations
>>>
import math
>>>
math.cos(math.pi / 4)
0.70710678118654757
>>>
math.log(1024, 2)
10.0
|
`random`
|
You can
use this module to generate random values.
>>>
import random
>>>
random.choice(['apple', 'pear', 'banana'])
'apple'
>>>
random.sample(range(100), 10) #
sampling without replacement
[30,
83, 16, 4, 8, 81, 41, 50, 18, 33]
>>>
random.random() # random float
0.17970987693706186
>>>
random.randrange(6) # random integer
chosen from range(6)
4
|
`statistics`
|
Module
for statistical calculation
>>>
import statistics
>>>
data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
>>>
statistics.mean(data)
1.6071428571428572
>>>
statistics.median(data)
1.25
>>>
statistics.variance(data)
1.3720238095238095
|
`decimal`
|
Can be
used by applications that requires precise calculations.
This calculates 5% tax on a 70 cent phone.
>>>
from decimal import *
>>>
round(Decimal('0.70') * Decimal('1.05'), 2)
Decimal('0.74')
>>>
round(.70 * 1.05, 2)
0.73
Performs modulo calculations and equality test that are unsuitable for binary float point.
>>>
Decimal('1.00') % Decimal('.10')
Decimal('0.00')
>>>
1.00 % 0.10
0.09999999999999995
>>>
sum([Decimal('0.1')]*10) == Decimal('1.0')
True
>>>
sum([0.1]*10) == 1.0
False
Performs very precise calculations.
>>>
getcontext().prec = 36
>>>
Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857')
|
functools
|
>>>
from functool import reduce
>>>
reduce(lambda x, y: x + y, [1, 2, 3, 4, 5])
15
>>>
|
Sunday, August 12, 2018
Some python number modules
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment